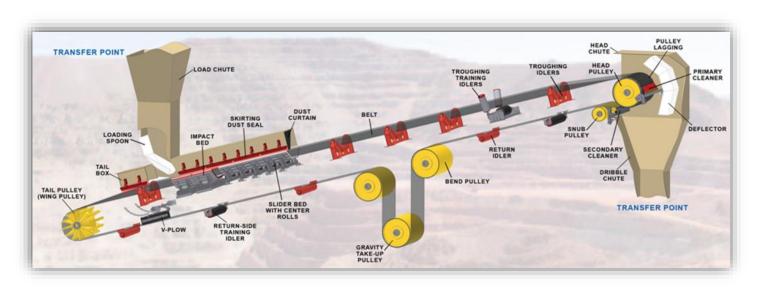


CONVEYOR PULLEY


Features

Conveyor Pulley plays an essential role in the performance and reliability of belt conveyor systems. It is designed to drive, redirect, tighten, or track the conveyor belt.

STANDARDA'S pulleys use highest quality materials in a production process with advanced technology. Each pulley is individually computer designed to meet the client's requirements.

Types of Pulley

According to the position and application, conveyor pulley can be divided into:

Drive/Head Pulley

Head pulley, located at the discharge point of the conveyor, provides the driving force for the conveyor, & usually has a larger diameter than other types of pulleys.

It is normally mounted in external bearings and driven by an external drive source.

To reduce the belt slippage, the head pulley is usually lagged with rubber or ceramic lagging materials.

Return / Tail Pulley

Tail pulley, located at the loading end of the belt, is used for the purpose of redirecting a conveyor belt back to the drive pulley.

It can have internal bearings or can be mounted in external bearings.

Snub Pulley

Snub pulley, designed and manufactured in different sizes, is used to adjust wrap / contact angle of belt on nearby pulley, typically for the purpose of improving traction.

Take-Up Pulley

Take-Up Pulley, usually gravity force adjustable, is used to maintain a proper belt tension.

Bend Pulley

Bend Pulley, installed above the take-up equipment part, is used to redirect the belt and provide belt tension.

Belt Width (mm)	Face Width (mm)	Pulley Diameter (mm)	
300	400	200, 250, 315, 400	
400	500	200 250 245 400 500	
500	600	200, 250, 315, 400, 500	
650	750	200, 250, 315, 400, 500, 630	
800	950		
1000	1150	200 250 245 400 500 620 900 4000 4250 4400	
1200	1400	200, 250, 315, 400, 500, 630, 800,1000, 1250, 1400	
1400	1600		
1600	1800	200 250 245 400 500 620 800 1000 1250 1400 1600	
1800	2000	200, 250, 315, 400, 500, 630, 800, 1000, 1250, 1400, 1600	
2000	2200		
2200	2500	500, 630, 800,1000, 1250, 1400, 1600, 1800	
2400	2800		
2600	3000	200 1000 1350 1400 1600 1800	
2800	3200	800,1000, 1250, 1400, 1600, 1800	

Step Shaft / Forged Bar

Application

* Mainly used for Mine industry, Marine Industry, Electric Generation, Petrol Industry, etc.

Features

- 1. Rough Machining or Finish Machining.
- 2. Manufacture as per drawing, could be journaled to meet customer's requirement.
- 3. Qualified supplier, and handle customer's need with consistent quality.

Material Ranges

- * The material could be used as per customer's requirement.

Specification

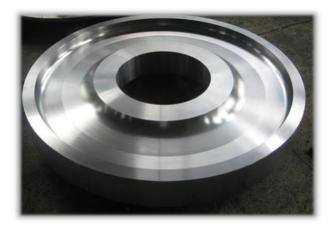
Туре	Max. Diameter	Max. Length	Max. Weight
Step Shaft/Bar	1500mm	17000mm	70t

Ring / End Disc / Flange

Application

* Mainly used for Mine industry, Marine Industry, Electric Generation, Petrol Industry etc.

Features


- 2. Rough Machining or Finish Machining.
- 3. 2. Manufacture as per drawing.
- 4. 3. Qualified supplier, and handle customer's need with consistent quality.

Material Ranges

- * The material could be used as per customer's requirement.

Specification

Туре	Max. Diameter	Max. Height	Max. Weight
Ring/End Disc/Flange	7500mm	1200mm	40t

Bearing Housing/Adapter Sleeve/Withdrawal Sleeve

Application

- → **Split Plummer Block Housings / Pillow Block Housing:** Normally used for Conveyor equipment, Paper machines, Drums, Tube mills, Converters, Large electrical machines, etc.
- → Adapted / Withdrawal sleeve the assembled part with the shaft: Mainly used for Conveyor equipment in the field of Light industry, Metallurgical industry, Textile, Paper-making, etc.

Features

Advanced Painting, High Precision, Full range of standard housing

Material Ranges

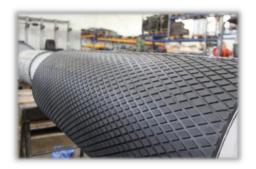
Casting Iron, Ductile Iron, Carbon Cast Steel, Stainless Steel, Plastic, Zinc alloy

Series

- → Split Plummer Block Housing: SN500, SN600, SN200, SN300, SNU500, SD3000, SD3100, SD500, SN3000, SAF500, SAF600, etc.
- → Pillow Block Housing: UCP200, UCSB200, UCPA200, UCPC200, UCTB200, UCFK200, UCST200, UCFC200, etc.
- → **Adapter Sleeves:** H200, H300, H2300, H3100, H3000, H3200

PULLEY LAGGING

Pulley Lagging: protecting the pulley shell from wear damage, and extending the pulley's service life. The lagging also increases the friction between the conveyor belt and the pulley to reduce belt slippage, and minimizes the buildup of bulk material, water, ice, or snow.


Available Lagging: Plain, Diamond, Square, Ceramic, Slide lagging, etc.

1. Diamond Pulley Lagging (Do-lag)

Diamond pulley lagging, economical type and less wastage, enhances the friction coefficient between the pulley and belt to reduce belt slippage.

1.1 Without CN bonding layer (Do-Lag)

1.1.1 Mini Diamond (M Do-Lag)

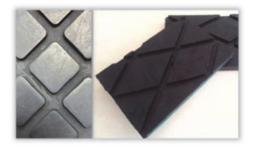
Tensile Strength (MPa)	Elongation at break (%)	Density (g/cc)	Hardness (Shore A)	Thickness (mm)	Width (mm)
7	350	1.3	CE . / E	00:20	up to
5	300	1.45	65+/-5	8~30	1400mm

1.1.2 Large Diamond (L Do-Lag)

Tensile Strength (MPa)	Elongation at break (%)	Density (g/cc)	Hardness (Shore A)	Thickness (mm)	Width (mm)
8	350	1.35	65+/-5	10~30	up to 2000mm

1.2 With CN bonding layer (Do-Lag Plus)

1.2.1 Mini Diamond (M Do-Lag Plus-1)


Tensile Strength (MPa)	Elongation at break (%)	Density (g/cc)	Hardness (Shore A)	Thickness (mm)	Width (mm)
12	400	1.2	65+/-5	8~30	up to 1400mm

1.2.2 Mini Diamond (M Do-Lag Plus-2)

Tensile Strength (MPa)	Elongation at break (%)	Density (g/cc)	Hardness (Shore A)	Thickness (mm)	Width (mm)
20	450	1.15	65+/-5	8~30	up to 2000mm

1.2.3 Square/Maxi Diamond (S/M Do-Lag Plus)

Tensile Strength (MPa)	Elongation at break (%)	Density (g/cc)	Hardness (Shore A)	Thickness (mm)	Width (mm)
15	450	1.15	60+/-5	8~15	2000mm

Specification (mm)	Pattern	Dimension (mm)
8x2000x10000	square	20x20
10x2000x10000	square	20x20
12x2000x10000	maxi diamond	85x50
15x2000x10000	maxi diamond	85x50

1.2.4 Crowned Diamond (C Do-Lag Plus)

Tensile Strength (MPa)	Elongation at break (%)	Density (g/cc)	Hardness (Shore A)	Thickness (mm)	Width (mm)
12	400	1.35	65+/-5	2010/12/15	250/500

2. Ceramic Pulley Lagging (Ce-Lag plus)

Ceramic pulley lagging is specially suited for pulleys where slippage and excessive wear and tear problems make normal rubber lagging ineffective. The alumina ceramic tiles help in proper grip of the belt under wet, muddy or any other such arduous conditions.

Tensile Strength (MPa)	Elongation at break (%)	Density (g/cc)	Hardness (Shore A)	Abrasion loss (mm³)	Content of aluminum oxide (%)
17	400	1.2	65+/-5	120	92%

Width (mm)	Thickness (mm)	Length (m)	
215	12	10m	
250/300/400/500	12/15/20	As per request	

3. Slide Rubber Lagging

Slide rubber lagging is suitable for coal, mining, port, and other application environment or the conveyor system, where has a problem of belt slippage.

The high wear resistant rubber improves the abrasion resistance and oxidation resistance of rubber greatly, prolonging service life in outdoor. The diamond pattern and groove greatly increase friction between belt and pulley, preventing the belt from slipping. This is easy for installation and replacement as well.

Product Parameters		
Item	Unit	Value
Material	-	NR/SBR
Density	g/cc	1.2
Hardness	Shore A	60+/-5
Tensile Strength	MPa	17
Elongation at break	%	420
Abrasion loss	mm ³	120
Working temperature	°C	-30~110